On Polynomials Related to Derivatives of the Generating Function of Catalan Numbers
نویسنده
چکیده
In [3] it has been shown that powers of the generating function c(x) of Catalan numbers {QaeNo ft ^ > > > 4 2 , •••}, w h e r e o : = {°, I> •••} (1 4 5 9 a n d A000108 of [8] and references of [3]) can be expressed in terms of a linear combination of 1 and c(x) with coefficients replaced by certain scaled Chebyshev polynomials of the second kind. In this paper, derivatives of c(x) are studied in a similar manner. The starting point Is the following expression for the first derivative:
منابع مشابه
Some Identities and a Matrix Inverse Related to the Chebyshev Polynomials of the Second Kind and the Catalan Numbers
In the paper, the authors establish two identities to express higher order derivatives and integer powers of the generating function of the Chebyshev polynomials of the second kind in terms of integer powers and higher order derivatives of the generating function of the Chebyshev polynomials of the second kind respectively, find an explicit formula and an identity for the Chebyshev polynomials ...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملIdentities of the Chebyshev Polynomials, the Inverse of a Triangular Matrix, and Identities of the Catalan Numbers
In the paper, the authors establish two identities to express the generating function of the Chebyshev polynomials of the second kind and its higher order derivatives in terms of the generating function and its derivatives each other, deduce an explicit formula and an identities for the Chebyshev polynomials of the second kind, derive the inverse of an integer, unit, and lower triangular matrix...
متن کاملKirillov's Unimodality Conjecture for the Rectangular Narayana Polynomials
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillov’s unimodality conjecture. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between...
متن کاملThe Generating Function of the Catalan Numbers and Lower Triangular Integer Matrices
In the paper, by the Faà di Bruno formula, several identities for the Bell polynomials of the second kind, and an inversion theorem, the authors simplify coefficients of two families of nonlinear ordinary differential equations for the generating function of the Catalan numbers and discover inverses of fifteen closely related lower triangular integer matrices. 1. Motivation The Catalan numbers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000